Search results for "Three point flexural test"
showing 10 items of 13 documents
Mechanical properties of sol–gel derived SiO2 nanotubes
2014
The mechanical properties of thick-walled SiO2 nanotubes (NTs) prepared by a sol–gel method while using Ag nanowires (NWs) as templates were measured by using different methods. In situ scanning electron microscopy (SEM) cantilever beam bending tests were carried out by using a nanomanipulator equipped with a force sensor in order to investigate plasticity and flexural response of NTs. Nanoindentation and three point bending tests of NTs were performed by atomic force microscopy (AFM) under ambient conditions. Half-suspended and three-point bending tests were processed in the framework of linear elasticity theory. Finite element method simulations were used to extract Young’s modulus values…
Flexural behaviour of external R/C steel fibre reinforced beam-column joints
2011
ABSTRACT A softened strut-and-tie macro model able to reproduce the flexural behaviour of external beam-column joint is presented. The model is specific for concrete with hooked steel fibres (FRC) and it is designed to calculate the flexural response, as load-deflection curve, of a beam-column sub-assemblages. The model considers the presence of a constant vertical load acting on the column and of a monotonically increasing lateral force applied at the tip of the beam.
Mechanical properties of pultruded glass fiber-reinforced plastic after moistening
2012
Abstract The kinetics of moisture sorption under immersion in water at room and elevated temperatures and flexural characteristics of dry (conditionally initial) and wet (moistened up to saturation level) composite material were investigated on flat specimens of polyester based glass fiber-reinforced plastic, cut from I-beam pultruded profile. It was found that the coefficients of diffusion and swelling are different in three principal axis of the composite. The former have the largest value in fiber axis direction, but the latter – in transverse to fiber axis direction out of plane of the layers. The observed difference in kinetics of mass gain and change of volume strain for the specimens…
Mechanical Behaviour of a Green Sandwich Made of Flax Reinforced Polymer Facings and Cork Core
2015
Abstract This work investigates the flexural behavior of a composite sandwich made of flax fibers reinforced skin facings and an agglomerated cork core, to be employed as an eco-friendly solution for the making of structural components of small sailing boats. An experimental mechanical characterization of the strength and stiffness flexural behavior of the proposed sandwich is carried out, providing a comparison of performances from three implemented assembling techniques: hand-lay-up, vacuum bagging and resin infusion. Sandwich beams have been tested under three point bending (TPB) at various span lengths. A procedure is also proposed and implemented to consider the potential influence of …
Longitudinal Flexure as a Method for Determining the Flexural Strength of Composite Materials
2004
A method is presented for determining the flexural strength of composites from tests on pinned specimens in axial compression. This scheme is close to the so-called Euler buckling model, but the load is applied eccentrically, and the bar is bent practically from the beginning of loading. An analytical model is proposed for calculating the flexural stress in longitudinal flexure of a thin bar in the case of large displacements. The problem is solved in elliptic integrals of the first and second kinds. The analytical model shows an excellent agreement with experiments. The results obtained are compared with experimental tension data. A device is also designed for testing composite bars in lon…
Influence of resin viscosity and vacuum level on mechanical performance of sandwich structures manufactured by vacuum bagging
2010
The choice of process parameters is critical in optimizing the mechanical properties of sandwich structures produced using the vacuum bagging technique. The aim of this paper is to analyze how the viscosity of the resin/curing agent system and the vacuum level influence the morphology and the mechanical behavior of sandwich beams with composite faces (epoxy resin and glass fiber fabric named COMBI 900) and a PVC foam core. Four different sandwich structures were produced by varying the viscosity of the epoxy resin/curing agent at constant maximum vacuum pressure. Three further structures were manufactured by varying the strength of the vacuum with the resin viscosity maintained constant at …
Three-Point Flexural Behaviour of GFRP Sandwich Composites: A Failure Map
2010
In this work, the failure mechanisms of GFRP/PVC foam core sandwich structures subjected to three-point bending are analysed. By varying the skin thickness (t ) and the span length between supports (l), experimental tests were carried out in order to find the relationship between the geometrical configuration of the sandwiches and the failure mechanism. By plotting failure mechanism on a graph of l against t , a failure map was created identifying the three typical failure mode regions of these sandwiches. The graph clearly shows the failure mode corresponding to each combination of l and t . To help optimise the use of these sandwich beams as structural elements, a theoretical failure mode…
Theoretical and Experimental Research on Mechanical Behavior of Layered Composites Laminates
2014
The aim of the research of the experiment was to determine the mechanical characteristics of the composite layered material. There has been two types of experimental tests i.e. test for determining the tensile modulus of elasticity of the material, the maximum voltage and the elongation at break of the material. The second type of test is the flexural test was intended to determine the maximum load that the breaking is produced by bending.
Bending test for capturing the vivid behavior of giant reeds, returned through a proper fractional visco-elastic model
2015
Abstract This paper presents results of experimental investigations made to evaluate the vivid behavior of giant reed Arundo donax. In particular, attention was paid to the relationship between visco-elastic properties and moisture content, which is widely recognized as one of the key factor that influences the mechanical properties of all wood-based materials. To this aim, after a controlled drying treatment on samples of reed, stress relaxation tests in three point bending configuration were performed to evaluate the effects of moisture content on visco-elastic behavior of the giant reed. Further, the novel aspect of this paper is that of using an Euler–Bernoulli model embedded with an ad…
Stiffness and strength of composite truss beam to R.C. column connection in MRFs
2015
Abstract The results of experimental and numerical investigations on the cyclic behavior of composite truss beam to reinforced concrete column connection of moment resisting frames are reported. The beams are constituted by a steel truss and end zone added rebar embedded within a concrete block cast in place, so that, after curing, the steel truss and the added rebar work together with the concrete matrix as reinforcement of the composite beam. Particularly, three specimens of two-span continuous beams were tested under monotonic and cyclic actions as three point bending test. With the goal to investigate about the behavior of the end zone of the beam integrated into a moment resisting fram…